Find Us On:

# java - Koch snowflake ( random fractal island) using recursion

jeff

in this lab you will write a program which will generate a random fractal island. the program must use recursion to generate the coast line similar to the Koch snowflake. the program should prompt the user to input a depth and also a scaling factor alpha. below , i pasted a program that generates a Koch snowflake, i really need help modifying it to generate random fractal islands . thanks import java.awt.*; import javax.swing.*; public class Snowflake extends JPanel { private int size; private int level; private double radius; private final double TWOSQRT3 = 2*Math.sqrt(3.0); public Snowflake() { size = 400; radius = 3*size/8.0; level = 6; setPreferredSize(new Dimension(size,size)); repaint(); } private void drawSegment(int l,double px,double py, double qx, double qy, Graphics g) { if (l==0) { g.drawLine((int) px,(int) py,(int) qx,(int) qy); return; } double ax = (2.0*px + qx)/3.0; double ay = (2.0*py + qy)/3.0; double cx = (2.0*qx + px)/3.0; double cy = (2.0*qy + py)/3.0; double bx = 0.5*(px + qx) + (qy - py)/TWOSQRT3; double by = 0.5*(py + qy) + (px - qx)/TWOSQRT3; drawSegment(l-1,px,py,ax,ay,g); drawSegment(l-1,ax,ay,bx,by,g); drawSegment(l-1,bx,by,cx,cy,g); drawSegment(l-1,cx,cy,qx,qy,g); return; } public void paintComponent(Graphics g) { super.paintComponent(g); double x0 = size/2 + radius*Math.cos(0*(2*Math.PI)/3); double y0 = size/2 + radius*Math.sin(0*(2*Math.PI)/3); double x1 = size/2 + radius*Math.cos(1*(2*Math.PI)/3); double y1 = size/2 + radius*Math.sin(1*(2*Math.PI)/3); double x2 = size/2 + radius*Math.cos(2*(2*Math.PI)/3); double y2 = size/2 + radius*Math.sin(2*(2*Math.PI)/3); drawSegment(level,x0,y0,x1,y1,g); drawSegment(level,x1,y1,x2,y2,g); drawSegment(level,x2,y2,x0,y0,g); } public static void main(String[] arg) { JFrame frame = new JFrame("Koch Snowflake"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frame.getContentPane().add(new Snowflake()); frame.pack(); frame.setVisible(true); } } Attachments
Tags Clarifications